Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Malate valves: old shuttles with new perspectives.

Identifieur interne : 000114 ( Main/Exploration ); précédent : 000113; suivant : 000115

Malate valves: old shuttles with new perspectives.

Auteurs : J. Selinski [Australie] ; R. Scheibe [Allemagne]

Source :

RBID : pubmed:29933514

Descripteurs français

English descriptors

Abstract

Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co-enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD-dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP-dependent MDH isoform. The NADP-MDH as part of the 'light malate valve' plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post-translational redox-modification mediated via the ferredoxin-thioredoxin system and fine control via the NADP+ /NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD-MDH ('dark malate valve') is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD-MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD-MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.

DOI: 10.1111/plb.12869
PubMed: 29933514
PubMed Central: PMC6586076


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Malate valves: old shuttles with new perspectives.</title>
<author>
<name sortKey="Selinski, J" sort="Selinski, J" uniqKey="Selinski J" first="J" last="Selinski">J. Selinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, Bundoora, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, Bundoora</wicri:regionArea>
<wicri:noRegion>Bundoora</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheibe, R" sort="Scheibe, R" uniqKey="Scheibe R" first="R" last="Scheibe">R. Scheibe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, Osnabrueck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, Osnabrueck</wicri:regionArea>
<wicri:noRegion>Osnabrueck</wicri:noRegion>
<wicri:noRegion>Osnabrueck</wicri:noRegion>
<wicri:noRegion>Osnabrueck</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:29933514</idno>
<idno type="pmid">29933514</idno>
<idno type="doi">10.1111/plb.12869</idno>
<idno type="pmc">PMC6586076</idno>
<idno type="wicri:Area/Main/Corpus">000201</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000201</idno>
<idno type="wicri:Area/Main/Curation">000201</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000201</idno>
<idno type="wicri:Area/Main/Exploration">000201</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Malate valves: old shuttles with new perspectives.</title>
<author>
<name sortKey="Selinski, J" sort="Selinski, J" uniqKey="Selinski J" first="J" last="Selinski">J. Selinski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, Bundoora, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, Bundoora</wicri:regionArea>
<wicri:noRegion>Bundoora</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheibe, R" sort="Scheibe, R" uniqKey="Scheibe R" first="R" last="Scheibe">R. Scheibe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, Osnabrueck, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, Osnabrueck</wicri:regionArea>
<wicri:noRegion>Osnabrueck</wicri:noRegion>
<wicri:noRegion>Osnabrueck</wicri:noRegion>
<wicri:noRegion>Osnabrueck</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant biology (Stuttgart, Germany)</title>
<idno type="eISSN">1438-8677</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Respiration (MeSH)</term>
<term>Chloroplasts (metabolism)</term>
<term>Malate Dehydrogenase (metabolism)</term>
<term>Malates (metabolism)</term>
<term>Multigene Family (MeSH)</term>
<term>NAD (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chloroplastes (métabolisme)</term>
<term>Famille multigénique (MeSH)</term>
<term>Malate dehydrogenase (métabolisme)</term>
<term>Malates (métabolisme)</term>
<term>NAD (métabolisme)</term>
<term>Respiration cellulaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Malate Dehydrogenase</term>
<term>Malates</term>
<term>NAD</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chloroplastes</term>
<term>Malate dehydrogenase</term>
<term>Malates</term>
<term>NAD</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Respiration</term>
<term>Multigene Family</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Famille multigénique</term>
<term>Respiration cellulaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co-enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD-dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP-dependent MDH isoform. The NADP-MDH as part of the 'light malate valve' plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post-translational redox-modification mediated via the ferredoxin-thioredoxin system and fine control via the NADP
<sup>+</sup>
/NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD-MDH ('dark malate valve') is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD-MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD-MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29933514</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>01</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1438-8677</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21 Suppl 1</Volume>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant biology (Stuttgart, Germany)</Title>
<ISOAbbreviation>Plant Biol (Stuttg)</ISOAbbreviation>
</Journal>
<ArticleTitle>Malate valves: old shuttles with new perspectives.</ArticleTitle>
<Pagination>
<MedlinePgn>21-30</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/plb.12869</ELocationID>
<Abstract>
<AbstractText>Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co-enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD-dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP-dependent MDH isoform. The NADP-MDH as part of the 'light malate valve' plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post-translational redox-modification mediated via the ferredoxin-thioredoxin system and fine control via the NADP
<sup>+</sup>
/NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD-MDH ('dark malate valve') is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD-MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD-MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.</AbstractText>
<CopyrightInformation>© 2018 The Authors. Plant Biology published by John Wiley & Sons Ltd on behalf of German Society for Plant Sciences, Royal Dutch Botanical Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Selinski</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-1247-7282</Identifier>
<AffiliationInfo>
<Affiliation>Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, Bundoora, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scheibe</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-6140-6181</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, Osnabrueck, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Alexander von Humboldt-Stiftung</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Biol (Stuttg)</MedlineTA>
<NlmUniqueID>101148926</NlmUniqueID>
<ISSNLinking>1435-8603</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008293">Malates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.37</RegistryNumber>
<NameOfSubstance UI="D008291">Malate Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.39</RegistryNumber>
<NameOfSubstance UI="C030574">malate dehydrogenase (decarboxylating)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008291" MajorTopicYN="N">Malate Dehydrogenase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008293" MajorTopicYN="N">Malates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Energy supply</Keyword>
<Keyword MajorTopicYN="N">malate dehydrogenase</Keyword>
<Keyword MajorTopicYN="N">malate valve</Keyword>
<Keyword MajorTopicYN="N">redox balance</Keyword>
<Keyword MajorTopicYN="N">shuttling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29933514</ArticleId>
<ArticleId IdType="doi">10.1111/plb.12869</ArticleId>
<ArticleId IdType="pmc">PMC6586076</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biosystems. 1999 Aug;51(2):79-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Feb 15;374(2):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2000 Nov 27;258(1-2):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11111052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioscience. 1984 Jun;34(6):378-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11541978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(3):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(370):865-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 5;277(27):24204-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11978797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Jul;43(7):706-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Dec;103(4):1147-1154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Jan 16;534(1-3):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12527366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Aug;35(3):316-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12887583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):546-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cytol. 2003;228:141-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14667044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Mar;120(3):370-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Jan;120(1):21-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(400):1231-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3524-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jun;56(416):1481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:187-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2413-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Jun 19;1100(3):217-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1610875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2000;64(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Mol Biol. 2005 Nov 30;38(6):650-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16336779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):206-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):380-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16435132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1976 Dec;58(6):726-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Aug;70(2):483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Apr;95(4):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 May;96(1):1-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 27;281(43):32065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2007 Oct;65(4):437-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17925997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Mar 15;410(3):621-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):786-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):541-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Nov 6;284(45):31249-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19745225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jan;72(1-2):101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):350-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19845879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jan;3(1):21-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20038549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 2;285(14):10408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):1830-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20107025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):832-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20413649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1143-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 2011 Feb;103(2):224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20933572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jan;65(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21175886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):694-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21263040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):202-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21410714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3289-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21430292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Apr;62(7):2381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2001 Dec;88(12):2136-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21669645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1990 Sep 11;192(2):299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2209586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(3):1445-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):252-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22336038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jan 18;3:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Sep 12;2:50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23671085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Jan;7(1):170-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2014 Nov;19 Pt B:357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24444663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Mar;164(3):1175-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24453164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Sep;152(1):138-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24576214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2014 Nov;19 Pt B:184-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24747677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2015 May;396(5):523-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25581756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2014;9(7):e29057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25763488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2015 Sep 04;13:e0182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26380567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):1443-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26392262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 May;67(10):3123-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26889011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jun;1857(6):810-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26946085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Aug;21(8):662-676</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27162080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jun;171(2):849-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2016 Jul;129(1):93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27251551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Jun 19;69(14):3491-3505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29194485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1988 May;13(5):178-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3076279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1988 Feb 1;260(2):771-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3341764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1981 Jun 12;636(1):58-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7284346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1980 Aug;109(1):257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7408880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Nov 6;374(3):351-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Feb 28;34(8):2621-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7873543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Apr 21;1163(1):10-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8476924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Dec 20;324(2):201-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8554310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Jan;11(1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9025303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1997 Oct 15;199(1-2):145-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9358050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1998 Jan 15;349(2):290-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9448717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1998 Mar 15;252(3):353-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9546649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 23;273(43):27927-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9774405</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Selinski, J" sort="Selinski, J" uniqKey="Selinski J" first="J" last="Selinski">J. Selinski</name>
</noRegion>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Scheibe, R" sort="Scheibe, R" uniqKey="Scheibe R" first="R" last="Scheibe">R. Scheibe</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000114 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000114 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29933514
   |texte=   Malate valves: old shuttles with new perspectives.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29933514" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020